稿件搜索

北京慧辰资道资讯股份有限公司 关于2023年度拟不进行利润分配的公告

  证券代码:688500         证券简称: *ST慧辰          公告编号:2024-029

  

  本公司董事会及全体董事保证本公告内容不存在任何虚假记载、误导性陈述或者重大遗漏,并对其内容的真实性、准确性和完整性依法承担法律责任。

  重要内容提示:

  ● 北京慧辰资道资讯股份有限公司(以下简称“公司”)2023年度利润分配预案:不进行利润分配,也不进行资本公积转增股本或其他形式的分配。

  ● 本次利润分配预案已经公司第四届董事会第五次会议及第四届监事会第四次会议审议通过,尚需提交公司股东大会审议。

  一、利润分配预案内容

  经大华会计师事务所(特殊普通合伙)审计,公司 2023年度合并报表实现归属于上市公司股东的净利润为-169,788,028.24元, 其中母公司净利润为-128,857,289.85元。截至2023年 12 月 31 日,合并报表累计未分配利润为-154,017,587.89元,母公司累计未分配利润为-180,448,944.35元。鉴于上述情况,综合考虑公司经营计划和实际经营需要,经董事会决议,公司2023年度不进行利润分配,也不进行资本公积转增股本或其他形式的分配。本次利润分配预案尚需提交公司股东大会审议。

  二、2023 年度不进行利润分配的说明

  根据《上市公司监管指引第3号——上市公司现金分红》《上海证券交易所科创板上市公司自律监管指引第1号——规范运作》等相关法律法规及《公司章程》的相关规定,公司2023年度拟不进行利润分配是基于公司实际情况所做出的决定,是为了满足经营需要和长远发展规划,保障公司战略发展的顺利实施,兼顾公司及全体股东的长远利益,不存在损害公司及中小股东权益的情况。

  公司将根据《上市公司监管指引第3号—一上市公司现金分红》《上海证券交易所上市公司自律监管指引第1号——规范运作》和《公司章程》的有关规定,从有利于公司发展和投资者回报的角度出发,综合考虑与利润分配相关的各种因素,致力于为股东创造长期的投资价值。

  三、公司履行的决策程序

  (一)独立董事意见

  独立董事专门会议对该议案进行审议,全体独立董事形成以下意见:公司2023年度利润分配预案符合《公司法》、《公司章程》中关于利润分配的相关规定,符合公司目前实际情况,兼顾公司及全体股东的长远利益,不存在损害公司及中小股东利益的情形。同意公司2023年度利润分配预案。

  (二)董事会会议的召开、审议和表决情况

  公司于2024年4月25日召开了第四届董事会第五次会议,审议通过了《关于<公司2023年度利润分配预案>的议案》,同意本次利润分配预案并提交股东大会审议。

  (三)监事会意见

  公司于2024年4月25日召开的第四届监事会第四次会议审议通过了《关于公司<2023年度利润分配预案>的议案》。监事会认为:公司2023年度利润分配预案符合法律法规及《公司章程》的相关规定,符合公司经营现状,兼顾公司及全体股东的长远利益,不存在损害公司及中小股东权益的情况。因此,监事会同意本次利润分配预案,并同意将该议案提交股东大会审议。

  四、风险提示

  公司2023年度利润分配预案符合公司的实际经营情况,不会对公司的正常经 营活动产生影响。该利润分配预案尚需公司2023年年度股东大会审议,并自公司股东大会审议通过之日起生效。

  特此公告。

  北京慧辰资道资讯股份有限公司董事会

  2024年4月26日

  

  证券代码:688500         证券简称: *ST慧辰          公告编号:2024-030

  北京慧辰资道资讯股份有限公司

  2023年度募集资金存放与实际使用情况的专项报告

  本公司董事会及全体董事保证本公告内容不存在任何虚假记载、误导性陈述或者重大遗漏,并对其内容的真实性、准确性和完整性依法承担法律责任。

  根据《证券发行上市保荐业务管理办法》《上海证券交易所科创板股票上市规则》《上市公司监管指引第2号——上市公司募集资金管理和使用的监管要求(2022年修订)》《科创板上市公司持续监管办法(试行)》等有关法律法规和规范性文件的要求,北京慧辰资道资讯股份有限公司(以下简称“公司”或“本公司”)董事会对公司2023年度募集资金存放与实际使用情况专项说明如下:

  一、募集资金基本情况

  根据中国证券监督管理委员会(以下简称“中国证监会”)出具的《关于同意北京慧辰资道资讯股份有限公司首次公开发行股票注册的批复》(证监许可〔2020〕1186号),公司获准向社会公开发行人民币普通股1,856.8628万股,每股面值人民币1.00元,每股发行价为人民币34.21元,合计募集资金人民币635,232,763.88元,扣除发行费用人民币74,830,000.00元(不含增值税)后,募集资金净额为人民币560,402,763.88元。本次募集资金已于2020年7月13日全部到位,普华永道中天会计师事务所(特殊普通合伙)对本次发行募集资金到位情况进行了审验,并出具了《验资报告》(普华永道中天验字(2020)第0610号)。

  截至2023年12月31日,公司对募集资金项目累计投入161,700,324.19元,其中:本年度使用募集资金36,155,930.72元。尚未使用募集资金余额人民币402,570,193.25元;其中用于现金管理的金额为400,850,372.55元。

  截至2023年12月31日,公司募集资金专户余额为1,719,820.70元(含募集资金利息收入扣减手续费等净额),具体情况如下:

  单位:人民币元

  

  二、募集资金管理情况

  为了规范募集资金的管理和使用,保护投资者权益,本公司依照《中华人民共和国公司法》《中华人民共和国证券法》《上市公司监管指引第2号——上市公司募集资金管理和使用的监管要求(2022年修订)》《上海证券交易所股票上市规则》《上海证券交易所科创板上市公司自律监管指引第1号——规范运作》等法律法规,结合公司实际情况,制定了《北京慧辰资道资讯股份有限公司募集资金管理制度》(以下简称“管理制度”)

  根据《管理制度》的要求,并结合公司经营需要,本公司在中信银行股份有限公司北京分行、北京银行股份有限公司五棵松支行、招商银行股份有限公司北京世纪城支行、招商银行股份有限公司武汉金融港支行开设募集资金专项账户,并于2020年7月13日与保荐机构中信证券股份有限公司以及中信银行股份有限公司北京分行、北京银行股份有限公司五棵松支行、招商银行股份有限公司北京世纪城支行、招商银行股份有限公司武汉金融港支行签署了《募集资金专户存储三方监管协议》,并对募集资金的使用实行严格的审批手续,以保证专款专用;授权保荐代表人可以随时到开设募集资金专户的银行查询募集资金专户资料,并要求保荐代表人每季度对募集资金管理和使用情况至少进行现场调查一次。

  本公司与武汉慧辰智数科技有限公司、保荐机构中信证券股份有限公司以及与招商银行股份有限公司武汉金融港支行签订《募集资金专户存储四方监管协议》,与《上海证券交易所上市公司募集资金管理规定》中规定的《募集资金专户存储三方监管协议(范本)》不存在重大差异。

  截至2023年12月31日止,募集资金的存储情况列示如下:

  金额单位:人民币元

  

  三、本年度募集资金的实际使用情况

  (一)募集资金投资项目的资金使用情况

  公司本报告期实际募集资金使用情况详见本报告附表1“募集资金使用情况对照表”。

  (二)募投项目先期投入及置换情况

  报告期内,公司不存在募投项目先期投入及置换情况。

  (三)使用闲置募集资金暂时补充流动资金情况

  报告期内,公司不存在用闲置募集资金暂时补充流动资金情况。

  (四)超募资金使用情况

  报告期内,公司不存在使用超募资金的情况。

  (五)闲置募集资金进行现金管理情况

  2020年7月29日,本公司召开第二届董事会第二十五次会议、第二届监事会第十二次会议,审议通过了《关于使用暂时闲置募集资金进行现金管理的议案》,同意公司在不影响募集资金投资计划正常进行的前提下,使用额度不超过人民币5.40亿元(含本数)的暂时闲置募集资金进行现金管理,购买安全性高、流动性好、具有合法经营资格的金融机构销售的有保本约定的理财产品(包括但不限于保本型理财产品、结构性存款、定期存款、通知存款、大额存单等),自董事会审议通过之日起12个月内有效。在前述额度及使用期限范围内,资金可以循环滚动使用。

  2021年7月29日,本公司召开第三届董事会第九次会议、第三届监事会第七次会议审议通过了《关于使用暂时闲置募集资金进行现金管理的议案》,同意公司在不影响募集资金投资计划正常进行的前提下,使用额度不超过人民币4.90亿元(含本数)的暂时闲置募集资金进行现金管理,购买安全性高、流动性好、具有合法经营资格的金融机构销售的有保本约定的理财产品(包括但不限于保本型理财产品、结构性存款、定期存款、通知存款、大额存单等),自董事会审议通过之日起12个月内有效。在前述额度及使用期限范围内,资金可以循环滚动使用。

  2022年7月29日,本公司召开第三届董事会第十五次会议、第三届监事会第十二次会议,审议通过了《关于使用暂时闲置募集资金进行现金管理的议案》,同意公司在不影响募集资金投资计划正常进行的前提下,使用额度不超过人民币4.70亿元(含本数)的暂时闲置募集资金进行现金管理,购买安全性高、流动性好、具有合法经营资格的金融机构销售的有保本约定的理财产品(包括但不限于保本型理财产品、结构性存款、定期存款、通知存款、大额存单等),自董事会审议通过之日起12个月内有效。在前述额度及使用期限范围内,资金可以循环滚动使用。

  2023年7月26日,本公司召开第三届董事会第二十六次会议、第三届监事会第十九次会议,审议通过了《关于使用暂时闲置募集资金进行现金管理的议案》,同意公司在不影响募集资金投资计划正常进行的前提下,使用额度不超过人民币4.50亿元(含本数)的暂时闲置募集资金进行现金管理,购买安全性高、流动性好、具有合法经营资格的金融机构销售的有保本约定的理财产品(包括但不限于保本型理财产品、结构性存款、定期存款、通知存款、大额存单等),自董事会审议通过之日起12个月内有效。在前述额度及使用期限范围内,资金可以循环滚动使用。

  截至2023年12月31日,公司使用暂时闲置募集资金进行现金管理的情况如下:

  金额单位:人民币元

  

  四、变更募投项目的资金使用情况

  (一)变更募集资金投资项目情况

  报告期内,公司募集资金投资项目未发生变更。

  (二)募集资金投资项目对外转让或置换情况

  报告期内,公司募集资金投资项目不存在对外转让或置换的情况。

  五、募集资金使用及披露中存在的问题

  公司按照相关法律、法规、规范性文件的规定和要求使用募集资金,对募集资金进行了专户存放和专项使用,并对募集资金使用情况及时地进行了披露,不存在变相改变募集资金用途,不存在募集资金使用及管理的违规情形。

  六、会计师事务所对公司年度募集资金存放与实际使用情况出具的鉴证报告的结论性意见

  大华会计师事务所(特殊普通合伙)出具了《北京慧辰资道资讯股份有限公司2023年度募集资金存放与实际使用情况专项报告及鉴证报告》(大华核字【2024】0011003025号),认为公司2023年度募集资金存放与实际使用情况的专项报告在所有重大方面按照中国证券监督管理委员会《上市公司监管指引第2号——上市公司募集资金管理和使用的监管要求(2022年修订)》、《上海证券交易所科创板上市公司自律监管指引第1号——规范运作》及相关格式指引编制,在所有重大方面公允反映了慧辰股份2023年度募集资金存放与使用情况。

  七、保荐机构对公司年度募集资金存放与实际使用情况出具的鉴证报告的结论性意见

  经核查,保荐机构中信证券股份有限公司认为:2023年度慧辰股份对首次公开发行股票募集资金进行了专户存放和专项使用,公司2023年度不存在募集资金投向变更的情况;具体使用情况与已披露情况一致,未发现首次公开发行股票募集资金使用违反相关法律法规的情形,不存在变相改变上述募集资金用途和损害股东利益的情形。

  特此公告。

  北京慧辰资道资讯股份有限公司董事会

  2024年4月26日

  附表1:募集资金使用情况对照表:

  募集资金使用情况表

  金额单位:人民币元

  

  注1:“本年度投入募集资金总额”包括募集资金到账后“本年度投入金额”及实际已置换先期投入金额。

  注2:“截至期末承诺投入金额”以最近一次已披露募集资金投资计划为依据确定。

  注3:“本年度实现的效益”的计算口径、计算方法应与承诺效益的计算口径、计算方法一致。

  注4:“用于收购股权支付对价”为本公司2020年12月收购北京信唐普华科技有限公司22%股权时,使用超募资金支付部分股权转让款,具体内容详见本公司于2020年10月21日在上海证券交易所网站(www.sse.com.cn)披露的《关于使用超募资金收购北京信唐普华科技有限公司22%股权的公告》(公告编号:2020-013)。

  注5:公司第四届董事会第五次会议、第四届监事会第四次会议审议通过了《关于募投项目延期的议案》,公司拟将上述两个募投项目达到预定可使用状态的时间分别延期至2025年6月和2025年12月。具体内容详见本公司同日披露的《关于募投项目延期的公告》。

  

  公司代码:688500                 公司简称:*ST慧辰

  北京慧辰资道资讯股份有限公司

  2023年年度报告摘要

  第一节 重要提示

  1 本年度报告摘要来自年度报告全文,为全面了解本公司的经营成果、财务状况及未来发展规划,投资者应当到上海证券交易所网站(www.sse.com.cn)网站仔细阅读年度报告全文。

  2 重大风险提示

  2023年度,公司归属于母公司所有者的净利润为-16,978.80万元,扣除非经常性损益后归属于母公司所有者的净利润为-12,269.79万元。主要原因系公司按照相关会计准则要求,对未来可能涉及的中小股东诉讼赔偿计提7,700万元预计负债及信唐普华未实现业绩承诺导致的应收业绩补偿/赔偿款计提大额信用减值损失导致。

  其他风险敬请查阅本报告第三节“管理层讨论与分析”,公司已在本报告中详细阐述公司在经营过程中可能面临的各种风险及应对措施。

  3 本公司董事会、监事会及董事、监事、高级管理人员保证年度报告内容的真实性、准确性、完整性,不存在虚假记载、误导性陈述或重大遗漏,并承担个别和连带的法律责任。

  4 公司全体董事出席董事会会议。

  5 大华会计师事务所(特殊普通合伙)为本公司出具了标准无保留意见的审计报告。

  6 公司上市时未盈利且尚未实现盈利

  □是     √否

  7 董事会决议通过的本报告期利润分配预案或公积金转增股本预案

  根据《上海证券交易所上市公司自律监 管指引第7号——回购股份》的有关规定:“上市公司以现金为对价,采用集中竞价方式、要约方式回购股份的,当年已实施的股份回购金额视同现金分红,纳入该年度现金分红的相关比例计算”。2023年度,公司累计通过回购专用证券账户以集中竞价交易方式回购股份1,244,611股,支付的总金额为人民币20,500,864.24元(不含交易费用)。

  经大华会计师事务所(特殊普通合伙)审计,公司 2023年度合并报表实现归属于上市公司股东的净利润为-169,788,028.24元, 其中母公司净利润为-128,857,289.85元。鉴于上述情况,综合考虑公司经营计划和实际经营需要,公司2023年度不进行利润分配,也不进行资本公积转增股本或其他形式的分配。以上利润分配预案已经公司第四届董事会第五次会议及第四届监事会第四次会议审议通过,尚需公司股东大会审议通过。

  8 是否存在公司治理特殊安排等重要事项

  □适用    √不适用

  第二节 公司基本情况

  1 公司简介

  公司股票简况

  √适用    □不适用

  

  公司存托凭证简况

  □适用    √不适用

  联系人和联系方式

  

  2 报告期公司主要业务简介

  (一) 主要业务、主要产品或服务情况

  公司从事的主要业务是基于数据分析方法论和数据智能分析技术提供数据调研/分析一体化服务、相关数智化应用技术产品及行业数字化应用解决方案。公司定位的主要细分市场是商业领域大中型客户和政府及公共服务机构客户,面向管理决策、市场营销、产品创新、生产运维、客户服务、城市治理等领域,公司提供基于内外部多维数据(包括消费者态度与行为数据、行业数据、生产数据、工业或物联网数据等)从采集、处理和分析到生成洞察/策略的一体化场景服务和相关模型、工具和系统等应用产品,以及行业数字化分析应用解决方案等,是以数据分析应用技术为核心支撑的科技创新型企业。

  公司十余年来持续服务多个行业大中型商业客户和政府及公共服务机构客户,在国内市场拥有较高的营收规模,围绕数据要素应用在数据科学方法论、数据分析应用场景、行业专业数据算法模型等方面积累了丰富的经验。当前,公司以“驱动数据要素的价值实现”为企业愿景,致力于研发数据分析和利用的智能技术,开发行业数据分析应用的专业算法/模型,为客户数据要素相关业务场景提供服务或产品支撑,助力数据要素从生产要素到价值创造的实现。在数据要素产业生态中,公司首先定位于数据咨询服务商,未来将通过商业模式的拓宽进一步沿数据要素生态价值链发展,取得更大的成长空间。

  公司的业务产品服务主要包括三种交付模式:专业数据分析服务、数字化营销软件产品/SaaS与行业数字化产品和解决方案。如下图:

  

  三种不同的交付模式都需要从数据采集、数据处理、数据分析和数据应用全部环节的一体化能力,具体如下:

  数据采集环节:专业数据分析服务模式下,相关的多维数据(包括企业内部数据、外部数据与消费者体验类数据等)通过多种方式(公司产品平台采集、采购、客户提供与对接)实现数据采集;而数字化营销产品/SaaS模式,则主要以企业的内部数据为主,多由客户企业提供和平台对接。行业数字化产品和解决方案模式下,涉及的数据,主要通过解决方案中相关产品采集或与客户平台对接获得。

  数据处理环节:主要进行用于后续分析应用的预处理(如清洗、融合与标签化等)与基础管理工作。根据客户数据应用场景与数据安全合规要求,有两种实施方式:在客户方(私有云)数据管理平台上进行,或者公司内部的大数据处理技术平台进行。

  数据分析环节:在前期融合处理的数据上,基于公司核心的业务场景专用数据分析模型(如产品路径/净推荐值等),生成相关的数据分析结果。分析模型的相关功能程序,以专业分析方法与数据科学技术的算法模型结合生成,并加入了最新AI人工智能的数据智能分析能力。这一环节为体现公司业务核心技术能力的关键环节,无论那种交付模式,都需要公司数据分析核心技术的支撑。

  数据应用环节:公司数据分析能力最主要的价值变现场景,根据客户需求提供多种应用形式:专业数据分析服务(报告),应用于客户业务运营核心场景(消费者洞察、产品创新、满意度研究、渠道运营分析等)的关键性业务问题分析,主要服务商业(如快消、运营商、TMT、汽车、房地产等)与政府/公共服务的关键业务决策;而数据分析产品(如DM数字化营销产品、XM体验管理产品平台以及信用分析评估产品等),将分析模型以云端SAAS产品/API服务形式,服务商业客户为主(快消、运营商、TMT与金融为代表)日常运营的快速分析;数据运营服务,是将数据分析与后续对应业务实施策略融合的持续化服务,满足快消与企业CRM服务的私域数据运营类需求;数字化转型与运营效能提升应用,主要通过实施行业数字化产品和解决方案,实现基于数据智能利用驱动业务创新,帮助相关行业(如烟草、农业等)进行数字化转型,提升业务的精细化与智能化水平,从而提升经营效益。

  (二) 主要经营模式

  1、生产模式

  公司主要为企业、政府机构提供基于多维度数据的业务分析一体化服务和应用技术产品以及行业数字化应用解决方案,因此公司的生产模式主要围绕数据获取、数据融合、数据分析和数据应用来进行。

  数据获取。公司获取数据的主要途径包括客户提供的数据(包括产品数据、销售数据、渠道数据、广告数据、用户数据与客服数据以及政府各委/办/局的相关数据)、公司向供应商采购的数据(主要包括消费者态度数据、行为数据、渠道类数据、舆情监控数据和行业特性业务数据)以及公司自行采集数据(主要包括消费者态度数据、行为数据以及所部署的数字化应用采集的相关生产过程数据)。

  数据融合。通过数据融合技术,公司实现了对多维数据的预处理和标签化操作,为数据后续的分析和应用奠定了基础。

  数据分析和数据应用。在融合数据的基础上,通过对数据科学技术和垂直领域专业分析方法模型的融合应用,完成两类业务应用服务:

  (1)数据驱动的数据分析服务:实现对相关业务场景的深入分析,发现深层业务问题并提供策略建议;

  (2)行业化数据智能应用解决方案:针对行业性数据应用需求,提供基于数据的智能解决方案。数据应用。公司基于本地化软件系统和云端的产品服务,完成从数据体系的设计整合、专业分析模型生成到最终场景化的智能应用的全流程服务。

  2、采购模式

  在经营过程中,公司对外采购内容主要包括两类:数据分析服务所需的数据与其他非数据类内容(如云计算环境、软硬件设备与其他服务等)。其采购流程也相应分为数据服务类采购和非数据服务类采购两种。公司通过供应商管理(经过比价入库等)实现供应商能力与资质的有效审核和甄别。

  (1)数据服务类采购

  公司主要通过外部数据供应商采购分析中必要但客户方未提供的相关数据,主要采购消费者态度数据、行为数据和渠道类数据等,公司会在合同中与数据供应商就数据的合法合规性进行约定。

  (2)非数据服务类采购

  非数据服务类采购,主要针对公司业务运营中除了数据之外的其他业务资源的采购。包括办公场地与设备、运营与业务服务所需的云计算环境、软硬件设备、固定资产、网络资源、公司市场宣传、资质与知识产权申请等相关服务。

  3、销售模式

  公司主要采用直销方式对客户产品、服务及解决方案进行销售。日常通过进入客户供应商采购名册、参与竞标等方式获取业务合同。

  4、研发模式

  公司的产品和技术研发以数据分析应用市场需求为导向,结合数据分析相关领域技术发展趋势的预测以及竞争对手技术业务能力分析来进行。

  公司采用产品管理团队和产品开发团队相结合的模式来进行自主研发。产品管理团队由公司技术总负责人和业务运营相关负责人组成,主要负责对研发项目过程中所有重大事项进行评议审核,对研发开发的关键节点和重大变更进行决策;产品开发团队则主要由研发实施相关的业务部门(参与需求采集、原型测试)、技术部门(模型研究、算法建模、应用开发、系统测试与运维支持等)核心成员组成,主要负责承接公司产品管理团队下发的任务,对所辅助的研发内容实现技术定义、开发与交付,并申报相关的研发成果。

  5、盈利模式

  公司以提供基于数据的业务分析服务与应用产品和行业应用解决方案等产品与服务来进行盈利。

  6、公司主要经营模式在报告期内的变化情况

  公司主要经营模式及影响经营模式的关键因素在报告期内保持稳定,无重大变化。

  (三) 所处行业情况

  1. 行业的发展阶段、基本特点、主要技术门槛

  公司主要为商业客户和政府机构提供基于多维度数据的数据分析与应用产品、服务和行业性数字化解决方案,上述产品或服务是公司主要的收入和利润来源,主要涉及数据服务行业和软件行业。

  公司核心业务模式、核心技术与主要产品或服务均与数据分析相关,因此根据中国证监会颁布的《上市公司行业分类指引(2012年修订)》分类,公司业务属于“I信息传输、软件和信息技术服务业”中的“I64互联网和相关服务”;根据《国民经济行业分类》(GB/T4754-2017),公司所处行业属于I64互联网和相关服务-6450互联网数据服务,所处细分行业为数据分析行业。

  数据分析作为一个跨学科的交叉科学技术,其基于量化指标,以数据资源为驱动基础,通过自动分析算法模型实现对业务深度理解与决策应用。其特点是通过深挖数据的价值来产生业务效益。从横向看其可服务任何具有数据与量化分析需求的行业,从纵向看可深入具体业务的深层场景。

  数据分析行业,是数据要素市场产业的重要组成。作为一个相对细分的垂直技术领域,其应用场景与可分析的数据资源紧密相关,早期服务主要分散在具有较多数据资源的行业/企业(如世界500强大型企业)的专业需求场景(如市场趋势预测、生产流程管控、消费者研究、产品设计、渠道建设等等),需要兼具业务深度理解与数据分析技术的有效实施能力,对相关专业服务公司的能力要求很高。随着大数据、行业数字化的迅速发展,数据的积累和应用需求日益明显,各行业的数字化与大数据应用系统建设进一步产生了多维海量的数据资源。如何对数据这种原材料进行深度加工应用,发挥数据的增量价值,实现智能化的运营,提升未来的竞争力,不再只是各行业头部/大型企业的目标,也成为各行业内涵盖中小企业的广泛诉求。随着2020年4月数据被确认为中国国民经济生产的重要生产要素,以及2022年12月国务院正式发布《关于构建数据基础制度更好发挥数据要素作用的意见》,充分说明中国已经正式进入数据要素市场的快速发展阶段。数据要素市场归结为数据采集、数据存储、数据加工、数据流通、数据分析、数据应用、生态保障七大模块。数据分析与数据应用作为重要组成,是建立相关数据分析与应用的技术服务体系,从数据资产中提炼出有价值的洞察和知识,帮助所有者与使用者更好地发挥其业务与经济价值,是数据要素市场未来最具价值的业务环节。近年来,随着相关技术推动数据分析的能力逐步深入,数据分析已经被证明是实现数据资产价值的一种低投入高产出的有效模式。近几年来,数据分析行业趋势表现为:业务服务范围扩展(从商业/互联网到政府/工业/农业/物联网,从头部大企业等行业中小企业),可分析的数据资源类型更多(如从生产经营数据到地理空间数据、从结构化与文本数据到语音、图像与视频等多模态数据),而服务场景也更加细分(从管理决策、设计创意、营销扩展到供应链、智能化生产等任何存在数据资源的场景),服务能力需求进一步升高(更智能、更深入与更快捷)。2023年5月,Gartner发布数据与分析的未来技术趋势报告,进一步昭示了数据相关的分析技术与产品服务,基于数据产品、AI化、平台生态化的能力,未来将深入企业数据应用的重要场景。由于数据分析行业专业性较强,需要对业务领域的深入认知、数据科学技术算法模型长期积累,乃至具备基于AI的智能化分析能力,所以当前虽然国内用户需求日益旺盛,但具备相关综合能力的大型/专业供应商较少。而国外市场由于其用户信息化和数字化基础成熟优势,数据分析市场理念、技术和业态发展较为领先,已经出现了许多专业服务商。以美国为例,聚焦商业消费者体验场景数据分析的Qualtrics和服务政府/商业大客户专业大数据分析服务的Palantir,代表美国数据分析智能服务的较高水平,已经获得了商业市场与资本市场的高度认可。同时,从2023年开始,随着AIGC与大模型技术的迅速发展(以ChatGPT/OpenAI为代表),相关AI技术又迅速融合到数据分析技术体系中,进一步提升数据分析的智能化与业务深度(如超长文本分析、多模态数据分析和快速策略生成),如Palantir基于专业大模型的态势分析与策略生成能力,已用于商业与军事等诸多场景。

  数据分析行业的技术门槛,包括两个层面:一方面是以AI、数据科学技术与行业认知深入结合构造的专业数据分析算法模型。首先要将行业的专业理论/分析方法,通过大量的行业专业数据的预处理(清洗融合)后,基于机器学习、深度学习等AI与数据科学算法进行建模,并需要持续调优,构建出基于数据的业务认知分析模型,打造对行业知识体系与逻辑的自动化、深度的分析认知能力。相关模型除了需要基于专业的AI与数据科学技术构建(机器学习/深度学习、行业大模型训练调优),同时必须具备较多的行业数据积累,并能有效抽象重构出分析场景的特点、专业认知与业务理解,才实际使得分析模型具有分析的深度和更好的可解释性,模型后续须进一步经过不断反馈优化,才能达到更高的精度。这样兼具分析效率与业务认知深度的数据分析技术模型才具有良好的应用效果,真正发挥数据的价值。另一方面是实现数据分析与应用的专业技术体系(包括专业数据积累与最佳的应用服务体系)。因为实际场景不同、数据来源多样,规模特性各不相同(如大数据与小数据、结构化与非结构化),客户诉求的差异。针对这种挑战,首先要具备长期积累的行业性分析数据资源(能够帮助构建基础的专业分析模型框架),在其上能够基于实际多源异构数据的特性进行融合分析(如针对数据的不同阶段/特性对应融合最优分析模型),而在最终的应用交付形式上也支持差异化(以专项软件/服务满足大客户定制化;以标准化/SAAS产品满足大量中小规模用户诉求;以集成化、数字化解决方案满足客户全生命期服务),实现快速、低成本与高价值的兼顾,也是数据分析供应商在实际客户服务应用中的重要技术能力要求。

  2. 公司所处的行业地位分析及其变化情况

  2020年4月,《中共中央国务院关于构建更加完善的要素市场化配置体制机制的意见》已经明确提出数据成为国民经济生产的重要要素。2021年3月《中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要》中,数字经济与数字化应用作为国民经济发展新方向,未来必然在各行业产生巨量的大数据资源内容,而各行业未来的数字化趋势,迫切需要通过专业数据分析服务实际发挥数据的价值。而2018年11月19日美国商务部最新出口技术管制框架讨论稿中,已明确将数据分析技术与人工智能、微处理器、量子计算、生物等前沿技术一起,列为限制出口的关键技术。因此,面向中国经济众多行业的专业数据分析服务,有着极为广阔的市场,未来必须也必然会得到巨大的发展。

  《中共中央国务院关于构建数据基础制度更好发挥数据要素作用的意见》2022年12月19日对外公布,提出20条政策举措,包括建立保障权益、合规使用的数据产权制度,建立合规高效、场内外结合的数据要素流通和交易制度,建立体现效率、促进公平的数据要素收益分配制度,建立安全可控、弹性包容的数据要素治理制度等,初步搭建了我国数据基础制度体系,充分激活数据要素价值,赋能实体经济发展,激活市场主体活力,推动构建新发展格局,促进高质量发展。

  公司作为数据分析行业(数据要素应用的重要环节)的一个重要专业服务商,在相关领域具有良好的口碑和专业的服务能力。主要表现在已为较多的行业(如汽车、快消、TMT、医疗、政府、农业等)提供了专业的服务,且服务客户主要为所在行业领先的大型龙头企业(以世界500强与大型国资为代表)。2021年以来,随着行业数字化转型与数据分析需求市场的迅速增加,公司内部在分析产品化、分析技术智能化与服务模式多样化方面均进行了对应提升,在服务行业/客户群体/业务规模与数据分析服务的产品化能力在进一步增强。

  3. 报告期内新技术、新产业、新业态、新模式的发展情况和未来发展趋势

  (1)新技术

  数据分析技术作为数据科学技术的分支,随着理论逐步发展和数据资源的日益扩大,近年进入了快速发展期,以大数据处理、机器学习为代表的数据科学算法技术(侧重于分析大规模数据与弱相关性)已逐渐超越传统统计技术成为数据分析的重要技术支撑;以AI人工智能(以深度学习为代表的文本、图像与语音处理)、AIGC、多模态大语言模型相关的智能化分析技术,在2021年以来迅速发展并逐步应用到数据分析场景,进一步推动了数据分析的智能化和深度,并帮助数据分析技术扩展到更大的数据资源空间。包括商业领域的高维非结构化数据(语音、图像与视频等)、物联网/工业互联网相关数据(大规模高速时序数据)以及更多专业领域数据(如生物工程的基因大数据等)。同时,新的数字化、可视化展示(如基于地理空间、机器视觉、三维实景建模和数字人相关)技术有效提升了时空类数据的分析能力。未来,以深度学习、强化学习、AIGC、模型自动化与数字化展示结合的数据分析技术体系,将具备更快的智能建模与自优化能力、更精确的业务推理,提升分析应用的智能化水平。在相关技术方面,以领域专业数据、相关分析技术与AI结合的数据价值管理能力,以Data Fabric为核心的数据管理模式,都将对数据分析技术应用产生积极影响。

  (2)新产业

  长期以来,数据分析应用主要集中在第三产业商业服务,围绕企业经营业务环节展开。由于相关数据分析与应用对企业经营效益提升有显著作用,长期受到国际性企业与行业头部大企业的关注,行业中的中小型企业,随着大数据发展与自身数据不断积累,以及管理者数据应用意识的加强,近两年大量中小型企业也对数据分析提出了需求,其功能需求较统一,并且用户规模大,标准化/产品化分析服务模式的市场空间未来将迅速增加。而2021年以来,随着数字经济的发展,数据已经上升为土地、劳动力、资本、技术以外的第五大生产要素。2022年12月,《中共中央国务院关于构建数据基础制度更好发挥数据要素作用的意见》发布,2023年2月,《数字中国建设整体布局规划》发布,明确了数据要素的发展与应用,成为国家与全社会未来的需求。而数据要素市场归结为数据采集、数据存储、数据加工、数据流通、数据分析、数据应用、生态保障七大模块。其中数据分析与数据应用作为重要的组成,从数据资产中提炼出有价值的洞察和知识,帮助所有者与使用者更好地发挥其业务与经济价值,是数据要素市场未来最具价值的业务环节。当前日益受到更多行业、更大客户群体的关注如在政府与公共管理服务领域,随着数字中国建设,智慧城市向智能城市转变,在态势感知、交通疏导等场景已初见成效,但更本质的城市经济发展(如提升区域产业经济,拉动区域消费内需与民生),仍是各级政府的关注重点。十四五期间,在数字化的基础上,通过公共服务管理的相关数据(市政、民生、企业经营、环保、城管与线上数据等)与专业的数据分析方法,为城市管理者提供智能化的分析策略建议,提升辖区招商引资与产业经济能力;通过数字化的资源撮合与交易平台,基于数据推动交易优化,改善政府对于本地经济的运营管理能力;通过进一步的数字化应用,驱动实现地区消费与民生满意度的提升,发挥城市的资源价值,相关数字化服务具有广阔市场前景。

  农业作为国民经济基础产业,长期落后于二三产业的发展速度,对国家粮食安全、农业产业发展产生隐患。近两年来一系列以农业数字化、科技化为代表的国家级发展规划(如2020年1月的《数字农业农村发展规划(2019-2025年)》与2018年颁布的乡村振兴战略)发布表明,农业领域相关服务将成为未来中国经济重要的投资与成长目标。其中,智能分析作为核心数字化技术之一,在《数字农业农村发展规划(2019-2025)》中明确要求加快向农业渗透。通过农业全流程数字化整合与相关数据分析,对提升土地自然资源利用、村集体资源管理、农业科学化育种、农产品生产效率与质量、相关产业链规划与涉农金融服务都具有直接的精准推动作用。近年来,服务畜牧数字化养殖的精细化运营分析管理、基于田间监测数据的高标准农田分析评估、通过AI图像分析实现病虫害识别与生成智能防治策略,这些农业数据分析应用的诸多场景,在农业数字化建设中日益受到重视,许多大型涉农国资企业、各类农业集团、各级地方农业管理者,都在进行相关投入,希望通过专业的服务,有效实现相关区域农业(如种植、畜牧)生产的数字化与全链条数据分析与决策支撑体系。

  随着以物联网、工业互联网为特点的行业场景(如工业企业的智能化/数字化、环保监测与治理运营)日益增多,大量基于物联网/工业物联网产生的数据其潜在价值得到广泛重视。通过智能算法模型分析相关数据与深入应用,以小的投入,快速帮助企业在生产运营中提升效率、降低原材料与能源消耗,实现设备自动运维,智能化节能降耗与减少污染。这对于广大传统制造业提升竞争力,以及国家早日达到碳中和目标,有着巨大的现实意义和广泛的需求。

  近年来,中国迅速发展的同时,面对的外部威胁/国际环境日益复杂,在涉及国家内外部管理与安全的诸多领域,开始受到外部限制打压与挑战。有鉴于此,2020年开始,国家推动的信创(信息技术应用创新)新产业战略在十四五期间预计达到万亿级市场规模。在信创细分领域,基础硬件、操作系统与数据库层面,中国企业已有较强能力,但在应用层,尤其数据相关应用方面,在公共安全与国家军事相关领域,由于历史原因与诸多限制,虽然存在大量需求场景但缺乏专业有效的供给。如何提升基层的态势分析决策的数据化与智能化能力、面向实战、安全可控的智能分析研判产品等,在相关领域许多场景都有着迫切的需求。专业数据分析产品业务未来必将具有更大的经济与社会价值。

  (3)新业态

  随着企业数据的不断累积,以及数据分析技术在互联网行业的逐步普及,新的数据分析业务形态对传统业务带来了挑战、优化与变革,越来越多的企业意识到通过对数据的分析和应用,可有效提升企业在行业中的竞争力。

  在商业领域,各行业的大量企业意识到数字化服务模式的趋势,开始尝试建立基于数字化的业务模式,以及相关的数据驱动的业务经营与决策能力,通过数字化能力与相关数据分析的体系,打破原有以行业经验和专家认知为主的模式,以基于数据的科学与量化的方法应对迅速变化的市场挑战,在生产供应链、消费者认知、产品创新、精准营销等多个场景提升自己的竞争力。数据驱动策略的基础是专业的数据分析技术,在每个业务环节中通过对多维度数据的整合分析与深度挖掘,生成相关策略并进行应用,帮助企业降低运营成本、增加整体效率和业务营收。

  在政府相关涉及的公共服务、环保、农业、旅游服务等领域,配合国家相关的数字化战略,相关政府和机构正在积极推进各产业的数字化,提升数据应用的能力与价值。各级政府部门通过开放城市、民生等数据资源,建立大数据交易中心、数字贸易港、推动全域旅游大数据应用等多种尝试,将城市资源数字化,借助分析技术实现智能化,提升城市资源管理与经济发展水平。而农业领域的各级生产与管理者,则不断通过基于数字化、科技化新手段,来推动农业传统生产管理形态的升级,真正有效实现高质量的农业生产发展与产业经济的升级。旅游行业已进入加速复苏通道,作为国家拉动消费的重要领域,各地方政府下属的大量中小旅游景区,对基于数字化的景区服务与运营能力产生有众多的需求。

  未来,数据将成为各行各业的重要资产,对形成自身竞争优势和良好的服务能力至关重要,而数据分析与相关应用亦将成为相关业务环节实现卓越能力的前置驱动力。以数据的最终应用为主导,在数字化资产管理、数据资产交易流通、数据多场景应用等整个数据的链条中,以需求为中心、以数据为基础,结合专业方法论与数据科学技术,快速、准确指导客户解决问题,并进一步通过专业洞察,提升分析结果的附加价值。上述全链条分析服务能力可帮助客户快速适应不断变化的业务需求,重新定义行业服务的新标准。

  (4)新模式

  随着数据科学、AI技术应用模式不断发展,以数据为中心的业务智能化驱动能力将成为企业的核心竞争力。数据分析服务在业务应用上,逐渐呈现出新的模式,企业可有效分析的数据维度与空间迅速扩大,从部分环节扩展到业务全流程,从内部业务经营数据扩展到生产物联网数据,从线下扩展到线上,从消费者态度数据扩展到消费者的行为数据,构成了全新的多维度数据空间。同时,客户规模因行业中小型客户的大量增加而迅速扩大,相应对服务模式也有了更多要求。具体表现在以下模式上的创新:

  在实施模式上,大量常规、标准性业务分析,由人工分析转变为基于AI与数据科学技术模型的智能化、自动化分析,以数字化智能分析产品的形式服务客户。产品除了本地化软件模式,更多是云端SAAS模式的产品形态,以快速而低成本的方式满足大量新增的客户群的实际需求。智能化方面,对产品的交互智能化与分析结果的智能化都提出了更多需求,随着AIGC大模型技术的发展,未来数据分析产品将以AI Agent智能体的形式,深入到每个业务环节,融合企业数据、专家经验与领域AI模型化能力,在垂直场景帮助客户专家更方便的进行自主分析,在效率与业务深度方面达到最佳效果。

  在服务模式上,随着客户对数据分析价值的认可,在基础分析服务上,越来越多的客户由于自身能力与业务要求,日益关注最终的业务效果(如营业收入实际增长目标)并愿意为其付费。因此,数据分析服务的未来,将不仅限于只提供基本分析软件产品,还能提供针对性的完整解决方案(软件+硬件+配套的服务),以及后续持续提供产品上的数据驱动的专业运营,帮助客户完成期望的最终业务效果。这些新的模式将成为数据分析与应用价值链的重要延伸,将具有更好的用户粘性和持续性收入。

  (5)未来发展趋势

  在数字化产业领域,政策的迅速演进为行业的发展明确了界限也指明了方向,从中央对于数据作为生产要素的表述、到数字化在十四五规划中的重要阐述、再到数据安全法的出台、及各地大数据局、一些数字产权交易所的设立,数字化产业与数据要素市场应用,将成为未来国民经济发展中最重要的驱动力,2021年底,工信部对外发布《“十四五”大数据产业发展规划》,要求到2025年,大数据产业测算规模突破3万亿元,年均复合增长率保持在25%左右。驱动数字经济时代的数字化产业在未来若干年都将会是一个高速发展、受高度关注、高频迭代演进的一个领域。

  3 公司主要会计数据和财务指标

  3.1 近3年的主要会计数据和财务指标

  单位:元  币种:人民币

  

  3.2 报告期分季度的主要会计数据

  单位:元 币种:人民币

  

  季度数据与已披露定期报告数据差异说明

  □适用      √不适用

  4 股东情况

  4.1 普通股股东总数、表决权恢复的优先股股东总数和持有特别表决权股份的股东总数及前 10 名股东情况

  单位: 股

  

  存托凭证持有人情况

  □适用    √不适用

  截至报告期末表决权数量前十名股东情况表

  □适用    √不适用

  4.2 公司与控股股东之间的产权及控制关系的方框图

  √适用      □不适用

  

  4.3 公司与实际控制人之间的产权及控制关系的方框图

  √适用      □不适用

  

  4.4 报告期末公司优先股股东总数及前10 名股东情况

  □适用    √不适用

  5 公司债券情况

  □适用    √不适用

  第三节 重要事项

  1 公司应当根据重要性原则,披露报告期内公司经营情况的重大变化,以及报告期内发生的对公司经营情况有重大影响和预计未来会有重大影响的事项。

  2023年度,公司实现营业收入5.39亿元,较上年同期增加8.27%;归属于上市公司股东的净利润-16,978.80万元,经营活动产生的现金流量净额为123.61万元。

  2 公司年度报告披露后存在退市风险警示或终止上市情形的,应当披露导致退市风险警示或终止上市情形的原因。

  □适用      √不适用

证券日报APP

扫一扫,即可下载

官方微信

扫一扫 加关注

官方微博

扫一扫 加关注

喜欢文章

0

给文章打分

本文得分 :0
参与人数 :0

0/500

版权所有证券日报网

京公网安备 11010202007567号京ICP备17054264号

证券日报网所载文章、数据仅供参考,使用前务请仔细阅读法律申明,风险自负。

证券日报社电话:010-83251700网站电话:010-83251800网站传真:010-83251801电子邮件:xmtzx@zqrb.net