北京富吉瑞光电科技股份有限公司 关于召开 2021 年年度股东大会的通知

· 召开日期: 2022 年 5 月 11 日

1:2022 平 5 万 11 口 3的网络投票系统:上海证券交易所股东大会网络投票系统

(7) 放示人会兴全外间的 2021年年度股东大会 (二) 股东大会召集人:董事会 (三) 股票方式,本次股东大会所采用的表决方式是现场投票和网络投票相结合的方式 (四) 现场会议召开的日期,时间和地点 召开日期时间,2022年5月1日 10点00 分 召开印地点,北京市顺义区空港工业园 B 区融慧园 25-4 号楼北京富吉瑞光电科技股份有限公司

签 (五) 网络投票的系统,起止日期和投票时间。 网络投票系统,上海证券交易所散东大会网络投票系统 网络投票起止时间;自 2022 年 5 月 11 日 至 2022 年 5 月 11 日

全 2022年5月11日 采用上梅证券交易所网络投票系统,通过交易系统投票平台的投票时间为股东大会召开当日的交易时间段、即 9:15-9:25.9:30-11:30,13:00-15:00;通过互联网投票平台的投票时间为股东大会召开当日的 9:15-15:00。
(六) 融资融券,转融通业约定顺回业务帐户和沪股通投资者的投票程序,涉及融资融券,转融通业务约定顺回业务相关账户以及沪股通投资者的投票,应按照《上海证券交易所科创版上市公司自律监管指引第1号 — 规范运作》等有关规定执行。(七) 涉及公开征集股东投票权不涉及

	涉及 、, 会议审议事项 :次股东大会审议议案及投票股东类型	
		投票股东类型
序号	议案名称	A 股股东
非累积	投票议案	
1	《关于<2021年年度报告及其摘要>的议案》	V
2	《关于<2021年度董事会工作报告>的议案》	V
3	《关于<2021年度监事会工作报告>的议案》	V
4	《关于<2021年度独立董事述职报告>的议案》	V
5	《关于<2021年度财务决算报告>的议案》	V
6	《关于 2021 年度利润分配预案的议案》	V
7	《关于公司 2022 年度董事薪酬方案的议案》	V
8	《关于公司 2022 年度监事薪酬方案的议案》	V
9	《关于续聘 2022 年会计师事务所的议案》	V
10	《关于变更公司经营范围及修订<公司章程>并办理工商变更登记的议案》	√

、说明各议案已披露的昨间和披露媒体上述议案已经由公司第一届董事会第二十三次会议、第一届监事会第十四次会议审议通过。具体注见公司于2022年 4月20 日于上海证券交易所网站(www.sse.com.en)披露的相关公告。、特别决议议案;议案10、对中小投资者单独计票的议案;议案6,议案7,议案8,议案9、涉及关策股东回避束决的议案;无沙四避本办的公社联贴在名法。

《关于补选公司第一届监事会非职工代表监事的议案》

4. 涉及关联股东回避表决的议案:无 应回避表决的关联股东多转,无 5. 涉及优先股保东多与表决的议案:无 三、股东大会投票注意事项 (一) 本公司股东通过上海证券交易所股东大会网络投票系统行使表决权的,既可以登陆交易系统投票平台(通过指定交易的证券公司交易终端)进行投票。也可以登陆互联网投票中台(网址;vote.seinfo.com)进行投票。仍公督陆互联网投票平台进行投票的,投资者需要完成股东身份认证。具体操作请见互联网投票平台网站说明。 (二) 股东所投选举票数超过其拥有的选举票数的,或者在差额选举中投票超过应选人数的,其对该项议案所投的选举票视超过其拥有的选举票数的,或者在差额选举中投票超过应选人数的,其对该项议案所投的选举票视为无效投票。 (二) 同一表决权通过现场,本所网络投票平台或其他方式重复进行表决的,以第一次投票结果为推。

(一)股权登记日下午 席股东大会(具体情况详见		C 结算有限公司上海分公 完成士委托公理 L 山麻/		
用权尔人云(共体间况许见 是公司股东。	下夜月, 开可以以下	旭形式安忙\连八山府2	区区和参加农民。该门连	八小必
7-22-442-74-0				

股份类别	股票代码	股票简称	股权登记日
A股	688272	富吉瑞	2022/5/5
(二)公司董事、监事和	1高级管理人员。	•	•

(二)公司董事 监事和高级管理人员。 (三)公司聘请的律师。 (四)其他人员 五、会议登记方法 (一)登记时间: 2022年5月6日上午8:30-11:30,下午14:00-17:00 (二)经记时间:

部 (三)登记方式:
1.自然人股东亲自出席的,应出示其本人身份证原件、股票账户卡原件;自然人股东委托代理人出席会议的,应出示委托人股票账户卡原件和身份证原件、股票账户卡原件和专托人身份证原件。 2.法人股东由法定代表人务自出席会议的,应出示某本人身份证原件。 2.法人股东由法定代表人条自出席会议的,应出示其本人身份证原件。 2.法人股东由法定代表人务的证明书原件,法人营业执照剧本复印件并加盖公章。股票账户卡原件,法人股东法定代表人分记明书原件,法人营业执照剧本复印件并加盖公章。股票账户卡原件,按权委托书(加盖公章)。 3.股东可按以上要求以信贷、传真或电子邮件的方式进行登记。至田口上十一年第一次下,2022年5月6日17400 经金融工

5(加盖公章)。 服底可按以上要求以信函、传真或电子邮件的方式进行登记,采用以上方式登记的,登记材料 3.于 2022 年 5 月 6 日 17:00,信函封面,传真资料首页顶端空白处,电子邮件标题应注明股东 3.联系电话及注明"2021 年年度股东大会"字样。通过以上方式登记的股东请在参加现场会议 5.45572世

业券法务部 6、邮政编码:101318 转此公告。 北京富吉瑞光电科技股份有限公司董事会 2022年4月20日 附件1:按权委托书 時件1:按权委托书

授权委托书 北京富吉瑞光电科技股份有限公司: 龙委托 先生(女士)代表本单位(或本人)出席 2022 年 5 月 11 日召开的贵公司 2021 年年度 东大会,并代为行使表决权。 委托人持普通股数: 委托人持任先股数: 委托人投东股数:

-1-1-1	II made to the second of			1.1-
序号	非累积投票议案名称	同意	反对	弃权
1	《关于<2021年年度报告及其摘要>的议案》			
2	《关于<2021年度董事会工作报告>的议案》			
3	《关于<2021年度监事会工作报告>的议案》			
4	《关于<2021年度独立董事述职报告>的议案》			
5	《关于<2021年度财务决算报告>的议案》			
6	《关于 2021 年度利润分配预案的议案》			
7	《关于公司 2022 年度董事薪酬方案的议案》			
8	《关于公司 2022 年度监事薪酬方案的议案》			
9	《关于续聘 2022 年会计师事务所的议案》			
10	《关于变更公司经营范围及修订<公司章程>并办理工商变更登记的 议案》			
11	《关于补选公司第一届监事会非职工代表监事的议案》			

委托人签名(盖章): 委托人身份证号: 委托日期: 年 月 日 受托人签名: 受托人身份证号:

會任: 委托人应在委托书中"同意"、"反对"或"赤权"意向中选择一个并打" \checkmark ",对于委托人在本授权委托书中未作具体指示的,受托人有权按自己的意愿进行表决。

公司代码:688272 北京富吉瑞光电科技股份有限公司 2021 年年度报告摘要

第一节 重要提示

1 本年度报告摘要来自年度报告全文、为全面了解本公司的经营成果、财务状况及未来发展规划,投资者应当到**wwwsscomen 网站行细阅读年度报告全文。

2 重大风险提示
公司已在本报告中详细阐述公司在经营过程中可能面临的各种风险及应对措施,敬请查阅本报告"第三节 管理层讨论与分析"之"四、风险因素"相关内容,请投资者予以关注。
第 本公司董事会、监事会及董事、监事、高数管理人员保证年度报告内容的真实性、准确性、完整性、不存在虚假运载、误导性陈述或重大遗漏,并承担个别和定事的法律责任。
4 公司全体董事出席董事会会议。
5 容诚会计师事务所代教师董通合伙)为本公司出具了标准无保留意见的审计报告。
6 公司上市时未盈利且尚未实现盈利
□是
 V答

当牛夏四属 | 工印公司政东岸利润的比例为 10.4%。20.1 + 投资司内定计 京本公积表增取本,不透紅服。
在董事会决议通过之日起至实施权益分派股权登记日期间,若公司总股本发生变动,公司将维持每股分配(例不变,相应调整分配设额,并将另行公告具体调整过程。
上述 20.1 年年度利润分配预率已经公司第一届董事会第二十三次会议及第一届监事会第十四次会议审议通过,尚将公司 20.1 年年度股疾大会审议。
8 是否存在公司治理特殊安排等重要事项
□活用 ○不适用
○不适用
○不适用
□不适用
□不适用

公司股票简记									
股票种类	股票上市交易所及 板块	股票简称	股票代码	变更前股票简称					
人民币普通股(A股)	上海证券交易所科 创板	富吉瑞	688272	不适用					
公司存托凭证简记 □适用 √不适用 粧名人和能名方式									

董事会秘书(信息披露境内代表)	证券事务代表
李宜斌	张小丽
北京市順义区空港融慧园	北京市顺义区空港融慧园
010-80474952	010-80474952
fujirui@fjroe.com	fujirui@fjroe.com
	李宜读 北京市顺义区空港融慧园 010-80474952

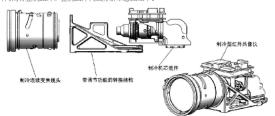
(一) 主要业务、主要产品或服务情况 1、主要业务 公司是一家主要从事红外热成像产品和系统的研发、生产和销售,并为客户提供解决方案的高新 企业。公司以红外热成像技术为基础,以图像处理为核心,逐步向固态微光、短波、紫外、可见光等 注题。 方的拓展。 公司的客户对产品的性能、应用场景及效果要求均有差异、因此公司需要对产品进行定制化设计 开发和持续的技术跟踪。公司从功耗、重量、体积、图像质量、灵敏度、作用距离与范围等多个方面形成 符合客户需求的产品整体方案,通过作品研发,测试、生产、检验等少务流程、间容户提供用户沿品。 公司的产品应用于军用和民用领域、在军用领域土要应用于通用军械、单兵、地面装备、空中装备 和水上装备等;在民用领域主要应用于工业测温、气体检测、石油化工、电力检测、安防监控、医疗检疫和消防应急等。

4州門的心忌等。 2、主要产品 公司主要产品按照构成和功能由简单到复杂,分为三大类,机芯、热像仪、光电系统。这三类产品 既有各自的独立性,也存在递进的层级关系。具体情况如下:

产品名称	产品构成	产品层级
机芯	由探測器、结构件、硬件电路和图像处理软件集成	可作为产品对外出售,也可作为热像仪的核心 部件
热像仪	由机芯、硬件电路、机械结构件和光学镜头集成	可作为产品独立销售,也可作为光电系统的核心部件
光电系统	由光电成像传感器系统、伺服转台系统和信号处理系统集成	可以作为一个独立的光电系统,也可以作为一个大的监控系统的光电搜索或跟踪子系统,为 大系统提供远距离小目标/热源目标的搜索或跟踪
镜头	由光学镜片、机械结构和控制电路集成	可以作为产品独立销售,也可作为热像仪的核心部件,公司生产镜头主要为自用,较少对外销售
(1) 给片 给3	L	

 $_{590}$ 一 $_{100}$ 归 $_{1$

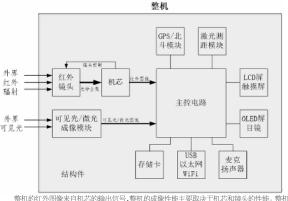
的光学透镜。 镜头一般是指针对某一波段光线,为实现特定光学目标(会聚、发散或整形等)由光学镜片、机械 结构和控制电路构成的部件。公司主要应用的镜头专指红外光学镜头,其作用是将目标辐射出红外波 段的光线,在满足成像质量要求的前提下,会聚到红外探测器的焦平面上,为探测器输入目标图像的 光学信号。 信亏。 制冷连续变焦镜头示意图如下:


镜头通常需要多片光学镜片组合,并靠机械结构来保证这些光学镜片的位置,靠电路控制来实现 光学镜片工作中的移动。同时需满足一定的环境适应性要求(即在高低温机械振动冲击等环境下仍 能正常工作,因此、红外光学镜头是由光学、机械、电子集成、具备独立功能的产品。 综上,从产品组成角度来说,镜片是镜头产品的主要零件之一;从技术状态角度来说,镜片是镜头 设计中光学设计的输出结果。

机芯是实现光电成像的核心模组,一般由探测器、硬件电路(其上运行机芯软件)、结构件构成,不包含光学镜头。典型机芯构成的分解示意图如下:

机芯中的探測器換收外界的电磁辐射信号,将其转换为电信号输出。硬件电路采集探测器输出的 (号并进行处理(包括信号放大,被数转换、图像处理,视频编码等),最终输出标准格式的电子视近的 (宋刚器作为一种头电器件,其自身无法处工作,需要依靠机芯的硬件电路,都医正常工作。机芯的 (中电路一般分为三部分,探测器驱动及信号采集电路,对探测器进行驱动并采集探测器输出的电信 信号处理电路,对探测器制出的信号进行限像阵噪、限候增强,视频编码等处理,接口电路。实现机 的电源管理和对外接口。信号处理电路的嵌入式处理器上运行机芯的软件,机芯软件负责管理调度 件电路的所有软件(包括探测器)。进行图像除燥、短头现成像分部。结构件将探测器及硬件电路的 装在一起,在保证结构温度的同时实现探测器和硬件电路的散热。 特定是公司直接销售的主要产品之一,也可作为公司其他更复杂光电产品的内配套部件,机芯 组成中,除探测器外,其余均运用了公司的核人技术。公司自主设计机芯的硬件电路,自主开发机芯 但成中,除探测器外,其余均运用了公司的核人技术。公司自主设计机芯的硬件电路,自主开发机芯 作,自主设计机芯结构件、输以 PCB 和结构件的外协加工环节,通过公司的软硬件删试与结构装配 经实现机芯的开发与制造。

(3)]孫懷汉 热像汉也称红外整机,通常指具有完整光电成像功能的产品。公司热像仪包括作为最终产品的整 机,如气体检测产品,也包括作为后续产品部件的整机组件。 热像仪的最简形式由机芯,镜头和结构件三部分组成,这种最基本的热像仪也称为热像仪整机组 供。经验费用组件,整构是根据或必要一种图形式。



功能复杂一些的热像仪在机芯、镜头和结构件之外,还配有主控电路和若干功能模块(如可见光北斗、显示屏等),因此也具备更为复杂的功能(如多光谱切挽成像或融合成像、红外测温、坐标定位拍照)录像/回放等),公司将这类热像仪通称为热像仪整机,简称整机。整机构成分解示意图如下:

月鏡 (FJR)

整机除了实现基本的热成像功能外,还针对特定应用具有一些专用功能,因此其硬件组成比整机 组件更复杂,住住需要在机芯之外增加整机控制电路板(主控电路).统一管理包括机芯在内的所有硬件模块,运行整机软件,实现整机功能。整机的工作原理示意图如下:

整机的红外图像来自机芯的输出信号、整机的成像性能主要取决于机芯和镜头的性能。整机的控制指挥中心是主控电路,可括机芯和镜头在内的其他硬件都是整机里的分立功能模块。在主控电路的调度下各自负责一部分功能。主控电路是典型的嵌入式系统平台,且往往是多处理器组合的架构。以实现整机较为复杂的功能。 实现整机较为复杂的功能。 宏机组件的主要功能就是热成像,结构件将机芯和红外光学镜头装配到一起,镜头将目标的红外辐射能量次聚制机芯的探测器焦平面上,机芯工作输出的红外视频信号就是整机组件的视频输出信号。整机组件的工作原理示意图如下:

整机组件 (第头控制) ----▶ 显示器 镜头 大 机芯 ----- 其他电路或系统 结构件

与独立的机芯产品不同,整射组件内的机芯通常还需要控制红外镜头,实现诸如光学变焦,视场切换,自动对焦等功能。整机组件的视频输出信号有两种用途:1输出标准视频信号,接到标准显示器上直接使人限观察;21输出数字视频信号,作为其他部件的视频输流源,集成为复杂系统的一部分。 热像仪整射组件与整和中,除上述已列出的机芯板心技术外,其余部分为远用了公司的核心技术。公司自主设计高端红外镜头,自主设计主控电路,自主开发主控软件,自主设计热像仪结构件,辅以部分功能模块的构筑。PCB和结构件的外协加工环节,通过公司的软硬件调试与整机结构装配,最终实现热像仪的开发与制造。

公司的光电系统具体指红外全景雷达,主要由整机组件、摆镜、转台、信号处理系统组成,转台搭载整机组件 360 度高速不间断旋转,形成对 360 度空间的实时扫描成像。

红外全景雷达工作时,高性能转台以高速高精度水平匀速转动,内部的热像仪整机组件与摆镜组件协同工作;实现高速高精度的旋转补偿,同步曝光、采集成像。热像仪的图像通过转台内部的光传输模块转换为光信号,由光纤传输到转台外的高性能信号处理系统。高性能信号处理系统通过光传输模

块将光信号转换回原始图像信息,送人数字信号模块,人工智能处理模块中,进行复杂的信号处理和 人工智能算法处理,将得到的处理结果通过网络传输到后端计算机。后端计算机上运行的用户控制软 件擦败处理结果。对其进行分套,并以图形化界面将三千多万像素的全景图像和处理结果实时展现在 显示屏上,并完成记录。回放 检索等高级功能。 红外全聚雷达是公司直接销售的光电系统产品,在构成上包括了机芯、整机、光学系统、转台、信 号处理平台等所有常别的部件,是公司技术难度和集成度较高的产品。公司在机芯和光学系统自主开 发的基础上,进一步完成了摆镜组件,高精度转台系统、高速精密光机扫描机构、智能告警技术等的自 主开发、最终才研制出红外全聚雷达产品。公司掌握了光电系统产品的核心技术,具备根理的核心技 未舍鱼九。

(5)主要产品的层级关系、重要性及对系统性能的影响 公司生产的各层级产品均为后续产品的重要的核心部件,对系统性能有重要的影响。

乙円工) 四十	(云(双) 100~()/5/105大/ 1001/13	EXTINATION OF A WANTER	生またいがから	>
各层级产品	重要性程度	对系统性能的影响	是否为核心 部件	是否为发行 人产品
探測器	探测器是完成光电转换的器 件,是红外热成像产品必须 的部件	探测器采集光学信号,转换为电信号,叠加噪声输出,对系统性能影响较大	是机芯的核 心部件	否
镜头	镜头把红外辐射聚焦在探测 器焦平面上,是红外热成像 产品必须的部件	镜头把红外辐射聚焦在平面上,从 根本上影响探测器接收到的辐射 强度和图像的清晰度,因此对系统 性能影响较大。另外在对体积重量 要求高的场合,由于机芯的体积相 对稳定,镜头设计的作用就更加突 出	是整机的核 心部件	是
处理电路和算法	对探测器输出的图像信号进 行处理,是红外热成像产品 必须的部件	探测器自身和制造工艺的特性,其 编出的图像参加有复杂的噪声, 要机定处理图和剪法还门调理。 因此其对系统性能影响很大整机 皮像 红外潮温、图像存储等功能, 需要主控电路和嵌入式软件实力 因此对紊机性能够称较大式软件实力 因此对紊机性能力能够响较大大软件实力	是机芯、整机 的核心部件	足
机芯	机芯完成了光电信号的接收 和处理,是红外热成像产品 必须的部件	机芯完成了接收辐射到图像输出 的过程,因此对系统性能影响较大	是整机的核 心部件	是
热像仪				
其中:整机组件	是构成整机最核心的部分, 实现了成像功能	成像系统最主要的功能就是成像, 整机组件对成像起到了决定性的 作用	可以是最终的 用户品,也系统 的核心部件	是
整机	是最终产品	本身决定了最终产品性能	可以是最然 明上 以是所需。 是 以是 的 也 可 系 的 的 之 的 的 之 的 的 之 的 的 之 的 的 也 也 的 之 的 的 也 也 的 之 的 的 也 的 。 的 的 的 也 的 。 。 的 。 的 。 的 。 的 。 的 。 的 。 的 。 的 。 的 。 的 。 的 。 。 。 的 。 的 。 。 。 。 。 。 。 。 。 。 。 。 。	是
光电系统	作为核心子系统,完成大系 统的主要功能	作为核心子系统,实现了最核心的 性能	可所品,也不是的人。 可所品,也不是的人。 可以需的,也不是的人。 可以需的,也不是的人。 可以不是。 可以不。 可以不。 可以不。 可以不。 可以不。 可以不。 可以不。 可以不	是

1、盈利模式 入司立足于自身的技术积累和特点,始终以客户需求为导向,向客户提供红外热成像产品与整体解决方案。公司采取差异化定位,主要立足于产业链中游,主要为客户提供机芯、热像仅和光电系统等。公司的客户对产品性能。应用场景及效果要求均有差异,公司需要对产品进行定制化设计开发和持续跟踪,从功耗、重量、体积、图像质量、灵敏度、作用距离与范围、成本等多个方面提出符合客户需求的产品最优设计方案,并通过样品所发、测试、生产、检验等业务流程。向客户提供相应产品,从而解 决、满足客户的需求。 2、采购模式

2、采购模式
公司对外采购的原材料主要有探測器。电子元器件、结构件、镜片和镜头等。根据需求部门提出的
条购要求,由采购部负责组织对供方的选择和评价、建立合格供方名单、制定物资采购计划和组织物
资采购。公司采取直接采购和外协委托加工程结合的采购模式;直接采购的原材料有探测器、镜头和
电子元器件等;外协委托加工主要包括电路板加工及焊接工序和结构件等。
为保障原材料的采购面量,时效和成本控制效果、公司依据银产评价管理办法和质量管理制度执
行采购、采购部税技原材料库存情况和生产计划结合实际研发。生产需要制定相应的采购计划,并负
责实施采购。采购部就执行采购决策时综合考虑使力提供原材料的质量、价格和供货期等因素。
公司建立了完善的采购管理体系,制订了规范的供应商递选管理制度,在降低供货风险的同时确
保供货的质量及时效性。公司对供应商递立了考评制度,及时淘汰不合格供应商、挑选新的优质供应
商。公司质管部负责采购原材料的进了规定的供应商递选管理制度,在降低供货风险的同时确
保供货的质量及时效性。公司对供应商建立了考评制度,及时淘汰不合格供应商、挑选新的优质供应
高、公司质管部负责采购原材料的进了规处,所管部效到采购部订送检的原材书后,严格按照采购合
同所规定的质量检验标准和公司有关规定对原材料采取全检或抽检方式进行质量检测程序。
公司对非核心工序采用委托加工方式进行采购。可以更加及时地响应客户需求,控制成本投入
基高供的速度、将资源与特力更好的集中在产品的核心工序;另一方面,电路板焊接加工、结构件等加工厂商较多、公司通过外协委托加工的产品能够得到充足的供应。
3、生产模式

3、生产模式 公司产品以定制化产品为主,基于上述产品特点,公司生产主要采取以销定产模式,实行订单式 产为主,少量库存式生产为辅的生产方式。订单式生产是指公司与客户签订订单后,根据订单情况 厅定制化设计及生产制造,以应对客户的差异化需求,库存式生产是指公司对通用组件进行预生产

或备货。
公司依据客户需求并结合订单制定生产计划,并依照公司生产管理规章制度相关文件执行生产计划。在执行生产层面、销售部负责需求的提报、生产部负责公司生产资源的综合平衡利用、生产计划的编制。批报和下达、并负责生产计划的组织实施。质管部负责外购、外协件的人厂验收、产品过程和出厂检验等。所发部负责技术状态的管理。
4、销售模式
公司主要采取直销模式向行业内军用总体单位和民用系统集成商销售光电成像产品。公司的机
芯、热像仅和光电系统产品是下游总体单位和系统集成商核心部件之一,且多为定制化产品。需满足客户提出的产品性能要求及工艺要求,并提供有关的技术服务支持,产品及其应用的特点决定了公司以直销模式为主于抵与高格

客户提出的产品性能要求及工艺要求,并提供有关的技术服务支持,产品及其应用的特点决定了公司以直销模式为主开拓市场。
在国内军用市场方面,公司与总体单位合作,配合总体单位参与竞标,向总体单位提供产品,总体单位对公司的产品进行进一步系统集成后向军方客户提供最终军用产品。军工领域的特点是客户对产品可需性、产品一致性、归零潮潮能力、支持服务储力要求高、为保证与客户沟通的有效性、东分理解客户的需求,公司采用直销的销售模式。军品项目定型后,该军品项目配套厂商由总体单位根据项目前期的配套厂商参与情况延续采购,一般不发生重大调整。
在民用市场中、公司目前的主要目前的为主要与上现整。在民用于场内公司的发生,在发生,企业公司的工程,企业公司给定的合作关系。公司通过产品移伐比选等方式实现产品销售,在参与产品择优比选的过程中,除价格因素外、公司的规模和资质,产品的技术先进性,产品质量、优货生产能力、技术服务能力等都是客户考虑的重要因素、公司在上述方面的综合优势保障了公司产品的竞争力。
5、研发模式
公司依托自身优势,不断增强核心竞争力,构建了从机芯的设计到综合光电系统的研发,到最终试制的完善的研发体系。公司深料灯内表成像大术多年,拥有一套符合光电成像产品研发的自有流程,研发课题的实施按照比套研发流程进行。

(三) 所处行业情况 1. 行业的发展阶段、基本特点、主要技术门槛

1. 行业的发展阶段、基本特点、主要技术门槛 (1)公司所处的行业 公司所处的行业 公司所处的行业 公司所处的行业 经常,以为了。 图。此外、红外成像(2是以被动的方式探测物体、还可以穿透烟雾、粉尘、般大地扩展了人类感知的范围。此外、红外成像(2是以被动的方式探测物体、比激光等主动成像方式更具隐蔽性。因此红外成像凭信隐蔽性好,抗于犹性强。目标识别能力强。全天候工作等特点、被广泛应用于侦察、监视和制等特种领域。随着红外成像产品的成本及价格逐渐降低,其在民用领域的应用也得到不断扩展。 公司是一家主要从事红外热成像产品和系统的形发。生产和销售,并为客户继供解决方案的高新技术企业。公司以红外热成像技术为基础,以图像处理为核心、逐步向固态微光、短波、紫外、可见光等方向拓展。公司的主要产品为机芯、热像仪和光电系统等。 (2)红外热成像行业发展阶段 红外热成像技术源于美国。早期应用于军事领域、伴随着冷战的结束及技术发展、红外热成像技术形于美国、早期应用于军事领域、伴随着冷战的结束及技术发展、红外热成像技术所产美国、能着世界经济的快速发展、红外热成像技术的快速进步和产品成本的不断下降。民用领域应用将具有更为广阔的发展空间。 我国红外热成像行业起步晚,与欧美发达国家的相对成熟的市场比、我国红外热成像行业起步的、与欧美发达国家的相对成熟的市场比、我国红外热成像行业起步的、与欧美发达国家的相对成熟的市场比、我国红外热成像行业起步的、与欧美发达国家的相对成熟的市场比、我国红外热成像行业起步的、是所发发展,我国已经实现了红外探测器的国产化、除了高端制冷红外探测器与国外仍存在一定差距外。

发展阶段。随着我国红外热成像技术的进步与发展,我国已经实现了红外棕测器的国产化,除了高端制含红外探测器与国外仍存在一定差距外。
①全球红外热成像现状及前景
在军用领域,红外热成像技术可用于对远,中,近程军事目标的监视,告警,预警与限踪。飞行物器的精确制导,武器平台的驾驶,导航,探测隐身武器系统,光电对抗等。在美,英,法,德,日、以色列等发达国家的军队中,红外热像仅已配置在陆,空,海军等各个军种中,例如海湾战争中平均每个美国士兵配备 1.7 具红外热像仪。因各国保持高度的军事敏感性,限制或禁止向国外出口军用产品,所以率先发展红外热成像技术的发达国家军队普及率较高,市场容量大。目前,国际军用红外热像产品市场主要被以美国,法国为代表的恢美发达国家企业主导。在民用领域,光电成像技术已在工业、医疗、安防监控和科学研究等领域广泛应用,成为自动控制,在线监测,非接触测量、设备故障诊断、资源勘查、温感测量、环境污染监测分析、人体医学影像检查等更方法。民用红外市场增长驱动力主要在于技术进步促使非制冷红外热像仪的成本不精醉低、从而推动红外热像仪民用场景的不断拓展。随着红外热像仪在工业、医疗、安防监控和科学研究等领域应用的推广,国际民用处外热像仪将迎来需求的快速增长期。②中国红外热成像现状及前景

②中国红外热成像现状及前景 目前国内国产红外热成像技术不断发展,其产品性有已基本接近进口产品,在很多领域已实现国

产替代。 在军用领域,我国国防工业从单兵、陆地武器、飞行武器和海军舰艇均需要红外热像产品,随着国

①政策推动行业快速发展

①政策推动行业快速发展 近年来,国家相关支持教策陆绕出台。为红外热成像行业发展带来了保障。在军用领域、军工、国 防与国家的安全息息相关、中央军委、国务院等部门相继出台鼓励红外检测、武器装备科研生产等相 关政策、推动着国防科技工业的发展。在民用领域、国务院、工信部、公安部、能源部等相继出台了一系 列标准及政策鼓励红外热成像产业的发展,并将红外热成像产业作为国家重点发展的产业给予高度 重视。政策的大力支持推动虹外热成像技术快速发展及应用。

里佛。 按東的大刀文升排四灯1%从原按文件处理发展及应用。
②国外军队应用相对成熟,国冷意选率有待提升
据环球时报指出,2021 年年我国的国防开支为 13553.43 亿元人民币,折合美元约为 2090 亿.而
美国 2021 年的军费支出高达 7405 亿美元,中国国防开支不及美国三分之一,我国国防费占 GDP 比
重相对较低,同时西方发达国家对于至外或像采取严格的技术转锁及产品禁运效策,也制约了全定军品市场规模的大幅增长。相对国外发达国家,我国的军队红外热像仪配备相对较少,在国家积极推进军队信息化及武器装备现代化建设的大背景下,在军民融合式发展的战略引导下,国内军用红外热像仪定将长机地通货原

仪市场正快速发展。 《》产品向小像元尺寸、高集成度方向发展、技术门槛进一步提高 红外产品本身具有较高的技术壁垒。更小的像元尺寸意味着在集平面单位面积上集成更多的像 素,提高分辨率,这就对原材料、设计和工艺、芯片封装有较高的要求,使红外热成像技术在已有的技

术门槛上再继续拔高。 ④规模化生产,成本下降拓宽民用领域 母规模化至产,成本下降和宽比用领域 脑着技术的不断成款。化外产品得以批量生产,单品成本下降,在民用领域中的应用将越来越广 泛。如电力检测、工业检测、医疗检测与防疫、安防监控、消防救援、辅助驾驶等领域对红外产品的需求 将越来越大。根据 Yole (Uncooled Infrared Imagers and Detectors 2019)中的数据,预计 2024 年全球 非制冷民用红外市场规模将达到 44.24 (乙美元。 此外、红外热成像作为新一代信息技术产业,具有较高的技术壁垒,人才壁垒,资质壁垒等特点, 等注制 4.类 进入即继处十

此外、红外热成像作为新一代信息技术产业,具有较高的技术壁垒,人才壁垒,资质壁垒等特点,新进入者进入困难较大。
(4)红外行业技术门槛
,我国红外行业技术门槛
,我国红外行业发术门槛
,我国红外行业发展的资产。
现实是一个大量,在中外关系日益紧张的环境下,国内核心部件进口受限。由于以上原因致使红外产业发展相对缓慢。
红外行业技术门槛高,主要是红外热像仪(包括芯片探测器)的研发,生产过程中需要运用到基础物理,对特、光学、热学、机械、微电子、计算机、软件、图像处理等多个学科领域的知识,技术含量较高,其次生产过程包括流片,封装、测试、标定、检验等,需要拥有专业化、高投入的工艺技术平台;红外技术和展开西用好层的体界。新的应用市场不断清强,产品研发要有较为健康的技术储备作为基础。以尽

木仍属于应用拓展阶段,新的应用市场不断涌现,产品研发要有较为雄厚的技术储备作为基础,以尽量缩短研发周期,快速推出适应新市场需求的新型产品,从而占领新的市场。

是婚别所受關,快速推出适应新市场需求的新爱产品、从而占领新的市场。 其次、红外热成像技术也面临着人者短缺。正如红外热像仪包括芯片探测器的研发、生产过程中涉及到多个学科领域的知识、需要相应专业的人人。目前这类人才还较少。同时,行业也有较高的资质壁垒。根据国务院、中央军委要求、提供特种装备类红外热像产品的厂商首先需通过相应的保密资格,质量管理体系、武器装备质量管理体系等相关认证并取得相应资格或证书、另外还需具有装备承制单位资格认证等资质。

2. 公司所效的行业地位分析及其变化情况。

(1. 在军品市场、公型是军用总体单位的专业配套企业中国红外军品市场长期以来一直由国有军工总体单位上据主导地位、国有军工总体单位开展军品业务的历史悠久,对军品领域有深刻的积累,在军品科研与生产上积累了丰富的经验,在直接面向军方的够利和系统产品方面,通有军工总体单位仍然具有较强和较完整的技术体系。公司的优势集中在红外热成像技术领域、在直接面向军方的军品整机和系统方面与国有军工总体单位作在在一定差距,因此、公司它伦产业维护中游,即为国有军工总体单位进行装备配套,进行横向发展、争取成为多个国有军工总体单位的优质配套供应商。 作为国有军工总体单位的能震快应商,一方面、公司与国看军工总体单位之间可以形成良性互补系,通过技术先进设度各目统务,并是比技术先进的军品整机和系统。另一方面,公司不直接参与军品整机和系统竞标、不会与总体单位的能改竞争,从而可以有机会获得给更多总体单位配金套的机会。

(2)社氏円刺製、公司大刀拓展民用市场公司拥有先进的集成创新作品,其成过程也是创新的过程。公司由有先进的集成创新能力。技术、部件的集成是红外行业的固有特点,对本公司而言,集成过程也是创新的过程。公司自成立以来,一直按照"基础层面技术创新、产品层面集成创新"创新模式进行发展。发挥专项技术能力、整体设计能力,进行集成创新。在民用领域主要应用于工业测温、气体检测、石油化工、电力检测、安防监控、医疗检疫和消防应

急等。

参过多年研究与创新、公司已经拥有红外热成像领域多项核心技术,并掌握了探测器驱动控制技术、基于洗成像图像降噪与增强技术、光学气体成像技术、光电系统所需的高精度转台控制技术与高可靠摆镜组件控制技术、中波红外镜头技术等多项行业内先进的关键技术、自主研发并量产的制冷多功能手持热仪、通应运输机、气体检测热像仪、光电雷达系统、高端中波红外镜头等多个产品关键指标已经达到国内先进或接近国际先进水平。
公司将继续强化自身在产业能中游的核心能力,同时专注和强化红外热成像技术与产品的深入研究、在关键技术方面实现突破与创新、致力于成为国内外一流的专业红外热成像企业。
3. 报告期内新技术、新产业、新业宏、新模式的发展情况和未来发展趋势(1)国产化与自主发展是我国红外热成像广业发展的基本趋势,红外热成像技术的发展统于美国,并长期运用在军事领域、团该技术、产品的军事敏感性、掌握最先进红外热成像技术的发展统于美国,并长期运用在军事领域、团该技术、产品的军事敏感性、掌握最先进红外热成像技术的美国、法国、以色列和日本等发达国家长期对我国实行严格的出口审批制度甚至差点,各组以来、我国位限和发生的企业。

至禁运,长期以来,我国仅能从法国进口少量工业级低端红外热成像产品,且出口商明确要求不允许

用在车事领域。 在上述背景下,随着我国基础工业、信息产业的发展,我国红外热成像产业也取得了重要的发展、深测器领域、受基础科研能力和工艺水平限制,与国外仍有一定差距,但在光学系统、算法、图像处等领域,我国已有较大的进步,使产品的整体达到或接近国际先进水平,一定程度上弥补了探测器或的差距。

整体而言,我国红外热成像产业已经接近国际水平,随着各相关技术环节的积累和进步,我国红 無所則 5.45世紀八元以外即 外热成像产业有望实现完全自主发展。 (2)红外热成像产品下游应用与功能进一步丰富

通过红外热成像产品可以突破人类视觉障碍,能在完全黑暗的环境下探测到物体,即使在有烟雾、粉尘的情况下也可实现探测,且不需要光颜照明,因此可以全天候使用。由于红外热成像具有隐蔽性好、抗干扰性强、目标识别能力强、全天候工作等特点、在军事和民用领域都发挥着越来越重要的作

随着红外热成像技术的发展与成熟,在民用领域得到了广泛的应用;在军用领域,为充分发挥红 外热成像的优势,其应用的范围会进一步扩大,且应用趋向于进一步高端化。 (3)多光谱融合技术将进一步发展 随着传感器技术以及信息处理软硬件技术水平的不断提高,以及先进算法、人工智能技术的不断

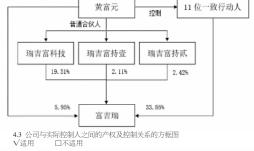
脑着传感器技术以及信息处理软硬件技术水平的不断混高。以及先进算法、人工智能技术的不断进步,通过融合可见米、红外、紫外、微光传感器等术电技术来提高光电成像的奇效性。通过改进信号处理,并与其它传感器如微光、雷达融合,打破目标识别模糊不清的局面,并提高目标远程识别的能力,为平台和作战人员提供全方位的监视、侦察、精确瞄准和电子战的能力。多光谱融合能够同时获取光谱特征和空间图像信息。是光电成像系统发展的重要方向。
(4)红外图像分辨率不断增大,在短短几年内主流红外图像分辨率已经从320×240、384×288 升级到640×480、640×512、更高分辨率的探测器如1024×768、1280×1024 也开始从样品逐渐进入正式产品。分辨率的提高使红外图像显示效果更加细腻、是红外行业技术发展的大势所趋。图像分辨率的指高直接与较重相图像数据量的制制。如1024×768、6)转率数据量是640×512 分辨率的之4倍,是384×288 分辨率的指高使红外图像显示效果更加细腻、是红外行业技术发展的大势所趋。图像分辨率的提高直接等效单属图像数据量的删论给机芯技术带来了巨大挑战、需要机芯从设计上显著提升数据带宽和存储器容量、提高图像处理算法的运行效率、才能实现对高分辨率红外图像的实时数据处理。

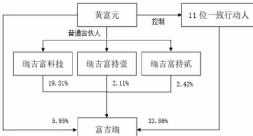
远、灵敬度尚等符点、制冷红外热成像产品将会逐步替代部分非制冷红外热成像产品、其使用泡围和使用量会进一步扩大。 在民用领域、红外热成像产品从工业检测、检验检疫、电力检测、安防监控等工业消费品领域、逐渐向无人机、炒新原则、汽车精助驾驶。营能空调、住宅安防、户外夜视、防火监测、手机及人脸支付、突发公共卫生安全防控等个人消费品领域发展、其应用的范围会进一步扩大、且应用趋向于高端化。3、公司主要会计数据和财务指标。3.1、近3年的主要会计数据和财务指标单位:元 币种:人民币

平匝:/6 印杆:/				
	2021年	2020年	本年比上年 增减(%)	2019年
总资产	795,255,000.45	377,318,580.31	110.76	200,394,529.43
归属于上市公司股东的 净资产	678,640,099.62	232,358,131.58	192.07	73,810,148.32
营业收入	317,927,242.89	327,322,729.37	-2.87	164,901,429.18
归属于上市公司股东的 净利润	76,443,601.71	85,880,889.17	-10.99	13,923,053.86
归属于上市公司股东的 扣除非经常性损益的净 利润	66,005,689.75	84,971,934.00	-22.32	14,143,803.62
经营活动产生的现金流 量净额	-86,239,617.32	46,979,464.85	-283.57	8,262,404.43
加权平均净资产收益率 (%)	23.01	62.44	減少 39.43 个百分点	20.97
基本每股收益(元/股)	1.27	1.60	-20.63	0.27
稀释每股收益(元/股)	1.27	1.60	-20.63	0.27
研发投入占营业收入的 比例(%)	12.09	10.12	增加 1.97 个百分点	13.56

59,033,439.50	95,198,377.30	69,378,319.65	94,317,106.44
			94,317,100.44
6,698,588.23	24,404,979.92	16,369,856.84	28,970,176.72
6,636,051.77	24,338,679.35	15,790,700.73	19,240,257.90
-31,236,923.87	38,292,622.06	-61,002,720.67	-32,292,594.84
	6,636,051.77 -31,236,923.87	6,636,051.77 24,338,679.35	6,636,051.77 24,338,679.35 15,790,700.73 -31,236,923.87 38,292,622.06 -61,002,720.67

√不适用


4.1 普通股股东总数、表决权恢复的优先股股东总数和持有特别表决权股份的股东总数及前 10 名股东情况


截至报告期末普通股股东总数(户)				4,939							
年度报告披露日前上-	一月末的	普通股股东总数	(户)	4,597							
截至报告期末表决权	截至报告期末表决权恢复的优先股股东总数(户)				不适用						
年度报告披露日前上一月末表决权恢复的优先股股 东总数(户)				不适用							
截至报告期末持有特别表决权股份的股东总数(户)				不	适用						
年度报告披露日前上一月末持有特别表决权股份的 股东总数(户)				不	适用						
前十名股东持股情况											
股东名称	名称 报告期 内增被 期末持股数量 比例(11.00	例(%) 持有有限售条 件股份数量		包含转融通借出股份的限售	质押、标记或冻 结情况		股东		
(全称)			EE1911(9			出股份的限售 股份数量	股份 状态	数量	性质		
宁波瑞吉富科技中心 (有限合伙)	0	14,672,272	19.31		14,672,272	14,672,272	无	0	境内非 国有法		
上海兆韧投资管理合 伙企业(有限合伙)— 苏州空空创业投资合 伙企业(有限合伙)	0	4,882,327	6.42		4,882,327	4,882,327	无	0	境内非 国有法 人		
黄富元	0	4,525,230	5.95		4,525,230	4,525,230	无	0	境 内 自 然人		
季云松	0	3,162,928	4.16		3,162,928	3,162,928	无	0	境内 自然人		
胡岚	0	3,021,403	3.98		3,021,403	3,021,403	无	0	境内 自然人		
周成	0	2,985,199	3.93		2,985,199	2,985,199	无	0	境内 自然人		
李宜斌	0	2,906,208	3.82		2,906,208	2,906,208	无	0	境内 自然人		
									Life oh et		

之间的产权及控制关系的方框图

述股东关联关系或一致行动的说明

决权恢复的优先股股东及持股数量的说明

4.4 报告期末公司优先股股东总数及前 10 名股东情况

第三节 重要事项 第三节 重要事项 公司应当根据重要性原则,披露报告期内公司经营情况的重大变化,以及报告期内发生的对公 司经营情况存重大影响的事项。 公司主要从事红外热成像产品的研发、生产和销售。2021年度,公司实现营业收入 31,792.72 万

元,实现归属于母公司所有者的净利润 7.644.36 万元。 2 公司年度报告披露后存在退市风险警示或终止上市情形的,应当披露导致退市风险警示或终

2 公司年度和 上上市情形的原因。 「平田 √不适用